Ta có hình vẽ trên:
Xét 2 tam giác vuông MBE và tam giác MCF có:
BM = MC (gt)
góc M1 = góc M2 (đối đỉnh)
suy ra tam giác MBE = tam giác MCF (cạnh huyền - góc nhọn)
suy ra BE = CF (2 cạnh tương ứng)
Vậy BE = CF
Ta có hình vẽ trên:
Xét 2 tam giác vuông MBE và tam giác MCF có:
BM = MC (gt)
góc M1 = góc M2 (đối đỉnh)
suy ra tam giác MBE = tam giác MCF (cạnh huyền - góc nhọn)
suy ra BE = CF (2 cạnh tương ứng)
Vậy BE = CF
Cho tam giác ABC(AB\(\ne\)AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax(E thuộc Ax, F thuộc Ax). So sánh độ dài BE và CF
Cho ΔABC (AB#AC),tia Ax đi qua trung điểm M củaBC.Kẻ BE và CFvuông góc với Ax(E thuộc Ax,F thuộcAx) . Sô sánh độ dài BEvà CF.
Cho tam giác ABC.Các tia phân giác của các góc B và C cắt nhau ở I. Vẽ ID vuông góc với AB (d thuộc BC), IF vuông góc với AC(F thuộc AC).CM: ID=IE=IF
1. Cho ΔABC (AB khác AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E; F ϵ Ax). So sáh độ dài BE và CF.
2. Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. CMR:
a) AD = BC
b) ΔEAB = ΔECD
c) OE là tia phân giác của góc xOy.
GIÚP NHÉ MN!!!
Cho tam giác ABC ( AB \(\ne\) AC ), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax ( E \(\in\) Ax, F \(\in\) Ax ). Chứng minh:
a) BE // CF, BE = CF và ME = MF;
b) CE // BF và CE = BF.
cho tam giác ABC (AB<AC), tiA Ax đi qua trung điểm M của BC. kẻ BE và CF vuông góc với Ax ( E và F thuộc tia A. chứng minh rằng :
a) AD=BC b) tam giác EAB= tam giác ECD
c)OE là tia phân giác của góc xoy
5: Cho ∆ABC, vẽ tia Ax nằm giữa hai tia AB, AC. Gọi E và F là hình chiếu của
B, C trên Ax. Chứng minh BE + CF ≥ BC
Cho tam giác nhọn ABC (AB<AC), điểm M là trung điểm BC. Kẻ tia Ax//BM, trên tia Ax lấy điểm D sao cho: AD=BM(M và D khác phía đối với AB). Gọi I là trung điểm của AB.
a, CM: tam giác AID= tam giác BIM.
b,CM: tam giác AIM= tam giác BID, AM//BD.
c, Đường trung trực của BC cắt AC tại E, tia BE cắt đường thẳng Ax tại F.CMR:BE=AC
d, Hai đường thẳng AB và FC cắt nhau ở O. CMR: O,E,M thẳng hàng.
Cho đoạn thẳng AB và trung điểm O của đoạn thẳng đó. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ hai tia Ax, By sao cho góc BAx = góc ABy, rồi lấy trên Ax hai điểm C và E ( E nằm giữa A và C ), trên By hai điểm D và F ( F nằm giữa B và D ) sao cho AC = BD, AE = BF
Chứng minh
a, OC = OD, OE = OF
b, Ba điểm C, O, D thẳng hàng, ba điểm E, O, F thẳng hàng
c, ED = CF
Cho tam giác ABC có góc B và góc C là hai góc nhọn. Trên tia đối cúa tia AB lấy điểm D sao cho AD=AB, trên tia đối của AC lấy E sao cho AE=AC
a) Chứng minh BE=CDb) Lấy M là trung điểm của BE, N là trung điểm của CD. Cm M,A,N thẳng hàngc) Ax là tia bất kì nằm giữa 2 tia AB và AC. Gọi H,K lần lượt là hình chiếu của B và C trên tia Ax. Cm BH + CK < BCd) Xác định vị trí của tia Ax để tổng BH + CK có giá trị lớn nhất CÁC BẠN GIÚP MÌNH PHẦN C với D ĐI ;; ;;