Do f(x) có nghiệm là 1 nên f(1) = 0
\(\Rightarrow a.1^2-b.1+1=0\)
\(a-b+1=0\)
\(a=b-1\) (1)
Do f(x) có nghiệm là \(-\dfrac{1}{2}\) nên \(f\left(-\dfrac{1}{2}\right)=0\)
\(\Rightarrow a.\left(-\dfrac{1}{2}\right)^2-b.\left(-\dfrac{1}{2}\right)+1=0\)
\(\dfrac{1}{4}a+\dfrac{1}{2}b+1=0\)
\(\Rightarrow4\left(\dfrac{1}{4}a+\dfrac{1}{2}b+1\right)=0\)
\(\Rightarrow a+2b+4=0\) (2)
Thay (1) vào (2) ta có:
\(b-1+2b+4=0\)
\(3b+3=0\)
\(3b=-3\)
\(b=-\dfrac{3}{3}=-1\)
\(\Rightarrow a=-1-1=-2\)
Vậy \(a=-2;b=-1\)