Lời giải:
a)
Ta có: \(A(x)=ax^2+bx+c\)
\(\Rightarrow A(-1)=a(-1)^2+b(-1)+c=a+c-b\)
\(=b-8-b=-8\)
b)
\(\left\{\begin{matrix} A(0)=4\\ A(1)=9\\ A(2)=14\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b+c=9\\ 4a+2b+c=14\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b=5\\ 4a+2b=10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b=5\\ 2a+b=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=4\\ a=0\\ b=5\end{matrix}\right.\)
c)
Ta có: \(\left\{\begin{matrix} A(2)=4a+2b+c\\ A(-1)=a-b+c\end{matrix}\right.\)
\(\Rightarrow A(2)+A(-1)=5a+b+2c=0\) (theo đkđb)
\(\Rightarrow A(2)=-A(-1)\)
\(\Rightarrow A(2)A(-1)=-[A(2)]^2\leq 0\)
Ta có đpcm.