Cho ΔABC vuông ở A có AB = 24cm, AC = 32 cm. Trên tia đối của tia AB lấy điểm N sao cho AN = 13,5 cm; trên tia đối của tia AC lấy điểm M sao cho AM = 18cm
a) CM ΔABC đồng dạng ΔAMN
b) MN // BC và MB ⊥ BC
Cho tam giác ABC cân tại A, biết góc A = 20o, BC = 2cm. Trên tia AB lấy điểm D sao cho góc ACD = 10o. Tính độ dài của AD.
I . cho tam giác abc có góc a = 900 , ab = 48cm , ac = 64cm . trên tia đối của ab lấy điểm d sao cho ad = 27cm , trên tia đối của ac lấy điểm e sao cho ae = 36cm
a. chứng minh rằng : tam giác abc đồng dạng với tam giác abe
b. tính bc và de
c. chứng minh : de // bc
d. chứng minh : eb ⊥ bc
Cho tam giác ABC đều , AB=a . trên tia đối của AC lấy E sao cho CE = 1/2 AC. trên tia đối của BC lấy F sao cho BF = 1/2 BC. trên tia đối của AB lấy D sao cho AD = 1/2 AB
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
cho tam giác ABC vuông tại a có ah vuông góc với BC, trên cạnh AB, AC lấy 2 điểm E, D sao cho góc DHE=90 độ. Tìm vị trí của điểm D, E sao cho độ dài DE nhỏ nhất
Bài 1: 1) Trên tia Ax lấy các điểm B, C, D theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.
a) Tính các tỷ số số AB/ BC và BC/CD
b) Chứng minh BC2 = AB.CD
2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.
a) Chứng minh AD/BD = AE/EC
b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.
Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.
a) Chứng minh AD/AB = AE/AC
b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC
Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:
a) Tỷ số DE/AE
b) Độ dài các đoạn thẳng AE, DE và AD.
Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC
b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Từ điểm M nằm trong tam giác ABC, kẻ các tia Mx, My, Mz theo thứ tự vuông góc với BC, AC, AB. Trên các tia Mx, My, Mz lần lượt lấy các điểm P, Q, R sao cho MP=BC, MQ=CA, MR=AB. CMR: M là trọng tâm của tam giác PQR