Cho 1 tam giác ABC gọi M , N là các điểm sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\) , \(\overrightarrow{3NA}+2\overrightarrow{NC}=\overrightarrow{0}\)
a/ Dựng 2 điểm MN
b/ Tính theo 2 vecto AB và AC
c/ C/m M ,N ,G thẳng hàng
1/Cho 1 tam giác ABC gọi M , N là các điểm sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\) , \(3\overrightarrow{NA}+2\overrightarrow{NC}=\overrightarrow{0}\)
a/ Dựng 2 điểm MN
b/ Tính MN theo 2 vecto AB và AC
c/ C/m M ,N ,G thẳng hàng
1. Cho \(\Delta ABC\) . gọi M là điểm thuộc cạnh AB, n là điểm thuộc cạnh AC sao cho \(AM=\frac{1}{2}AB\) , \(AN=\frac{3}{4}AC\) . gọi O là giao điểm của CM và BN. trên đường thẳng BC lấy E. đặt \(\overrightarrow{BE}=x\overrightarrow{BC}\)
a) Phân tích \(\overrightarrow{AO}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
b) tìm x để A,E,O thẳng hàng
2. cho tam giác ABC đều cạnh \(2\sqrt{3}\) , d là đường thẳng qua B và tạo với AB 1 góc 600 \(\left(C\notin\Delta\right)\) . tìm GTNN của \(A=\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
Cho tứ giác ABCD. Giả sử tồn tại O thỏa mãn:
\(\left\{{}\begin{matrix}\left|\overrightarrow{OA}\right|=\left|\overrightarrow{OB}\right|=\left|\overrightarrow{OC}\right|=\left|\overrightarrow{OD}\right|\\\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OB}+\overrightarrow{OB}=\overrightarrow{0}\end{matrix}\right.\) . Cmr ABCD là hình chữ nhật
Câu 1: Cho \(\Delta ABC\), N là điểm xác định bởi \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}\), G là trọng tâm \(\Delta ABC\). Hệ thức tính \(\overrightarrow{AC}\), theo \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\) là?
Câu 2: G là trọng tâm \(\Delta ABC\), đặt \(\overrightarrow{GA}=\overrightarrow{a}\), \(\overrightarrow{GB}=\overrightarrow{b}\) Tìm m,n để có \(\overrightarrow{BC}=m\overrightarrow{a}+n\overrightarrow{b}\)
Câu 3: Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD và BC. Hãy tìm m, n để \(\overrightarrow{MN}=m\overrightarrow{AB}+n\overrightarrow{DC}\)
Câu 4: G là trọng tâm \(\Delta ABC\). Gọi I là điểm đối xứng của B qua G. Các số m, n thích hợp để \(\overrightarrow{AI}=m\overrightarrow{AC}+n\overrightarrow{AB}\)
Cho △ABC, \(\widehat{A}=90^0,\)BC= \(\frac{2a}{\sqrt{3}}\), AC=a (a>0)
a, Tính \(\overrightarrow{AB}.\left(\overrightarrow{AC}-2\overrightarrow{BC}\right)\)
b, Xác định vị trí điểm M thỏa mãn \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{BC}\)
Cho tam giác ABC đều, độ dài cạnh bằng 1.
a) Tìm tập điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\overrightarrow{MA}-\overrightarrow{MC}\right|\)
b) Tìm tập hợp điểm N thỏa mãn \(\left|\overrightarrow{NA}+2\overrightarrow{NB}\right|=\left|\overrightarrow{NA}-\overrightarrow{NC}\right|\)
c) E là điểm thay đổi trên đường thẳng BC, tìm giá trị nhỏ nhất của \(\left|\overrightarrow{NA}+\overrightarrow{NB}+4\overrightarrow{NC}\right|\)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)
cho tam giác ABC có G là trọng tâm lấy M,N là các điểm thỏa mãn \(3\overrightarrow{MA}+4\overrightarrow{MA}=\overrightarrow{NB}-3\overrightarrow{NC}=\overrightarrow{0}\). Gọi là giao điểm của AG và BC. Khi đó phát biểu nào sau đây là đúng:
A)\(\overrightarrow{MN}=-\frac{15}{14}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}\)
B)C là trung điểm IN
C) Cả A&B đều sai
D)Cả A&B đều đúng