+) Ta có :
\(\widehat{B1}=\widehat{B2}=\dfrac{\widehat{ABC}}{2}\)
Mà \(\widehat{ABC}=2\widehat{C1}\)
\(\Leftrightarrow\widehat{B1}=\widehat{B2}=\widehat{C1}=\dfrac{\widehat{ABC}}{2}\)
+) Ta có :
\(\widehat{B1}+\widehat{B3}=180^0\left(kềbuf\right)\)
\(\widehat{C1}+\widehat{C2}=180^0\left(kềbù\right)\)
Mà \(\widehat{B1}=\widehat{C1}\)
\(\Leftrightarrow\widehat{B3}=\widehat{C2}\)
Xét \(\Delta ABE;\Delta ACK\) có :
\(\left\{{}\begin{matrix}BE=AC\\\widehat{B3}=\widehat{C2}\\AB=CK\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABE=\Delta ACK\left(c-g-c\right)\)
\(\Leftrightarrow AE=AK\)