Bạn tham khảo tại link sau:
Bạn tham khảo tại link sau:
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm giá trị lớn nhất của \(P=\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}+\dfrac{1}{\left(3y+1\right)\left(x+z\right)+y}+\dfrac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
Cho x, y, z dương thỏa mãn xyz = 1. Tìm GTLN:
P = \(\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}+\dfrac{1}{\left(3y+1\right)\left(z+x\right)+y}+\dfrac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
cho x,y,z là các số thực dương , thỏa mãn : xy+yz+zx=xyz
Chứng minh rằng \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{1}{16}\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Cho 3 số thực dương x, y, z thoả mãn \(x+y+z=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}-\dfrac{2}{27}\left(xy+yz+zx\right)\)
cho x, y là các số dương thỏa mãn xyz=1. CMR \(\dfrac{x^3}{\left(1+y\right)\left(1+x\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}>=\dfrac{3}{4}\)
Xét các số thực dương x, y, z thay đổi sao cho: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=0\)
1, Chứng minh rằng: \(\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\ge1\)
2, Tìm giá trị lớn nhất của biểu thức \(P=x^2+y^2+z^2-\dfrac{xy}{x+y}-\dfrac{yz}{y+z}-\dfrac{zx}{z+x}\)