Áp dụng BĐT Minkowski, ta có:
\(A\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
Tiếp tục áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(A\ge\sqrt{6^2+\left(\dfrac{9}{a+b+c}\right)^2}=\sqrt{6^2+\left(\dfrac{9}{6}\right)^2}=\dfrac{3\sqrt{17}}{2}\)
Đẳng thức xảy ra khi \(a=b=c=2\)