a ) \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}+\sqrt{\frac{b^2}{c^2+\left(a+b\right)^2}}+\sqrt{\frac{c^2}{a^2+\left(b+c\right)^2}}\le\frac{3}{\sqrt{5}}\)
với a,b,c là các số thực dương
b ) cho ba số thực dương a,b,c thỏa mãn abc=1. tìm GTNN của biểu thức
\(P=\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
\(Q=\frac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\frac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}+\frac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
Cho ba số thực dương a,b,c > 0 thoả mãn a+b+c\(\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(S=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Cho ba số thực dương a, b, c thỏa mãn abc=1. Tìm GTNN của biểu thức P=\(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)
Cho 3 số thực dương \(a;b;c\) thỏa mãn: \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2019\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho 3 số thực dương a,b,c thỏa mãn a+b<_c. Tìm giá trị nhỏ nhất của biểu thức\(P=\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
1/ a/ cho A= \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)
Tính A khi \(x=\frac{2}{2+\sqrt{3}}\)
b/ cho a,b,c là các số thức khác 0 thỏa mãn a+b+c=0 .cmr : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
2/
a/ tìm tất cả các số tự nhiên sao cho \(n^2-14n-256\) là 1 số chính phương
b/ cho a>0 ,b>0 và ab=1. tìm GTNN của biểu thức : A =\(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
2 .
Cho x , y là các số thực dương thỏa mãn \(\left(x+1\right)\left(y+1\right)=4xy\) Chứng minh rằng : \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)Cho a,b,c dương và abc=1
CMR: \(\frac{a^4}{2\left(b+c\right)^2}+\frac{b^4}{2\left(a+c\right)^2}+\frac{c^4}{2\left(a+b\right)^2}+\frac{1}{c^2\left(a+c\right)\left(a+b\right)}+\frac{1}{b^2\left(a+b\right)\left(b+c\right)}+\frac{1}{a^2\left(a+c\right)\left(a+b\right)}\ge\frac{1}{8}\)