Cho a, b, c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
S=\(\dfrac{a^2+b^2+2}{a+b-ab}+\dfrac{a^2+c^2+2}{a+c-ac}+\dfrac{c^2+b^2+2}{c+b-bc}\)
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
Cho ba số a, b, c thỏa mãn điều kiện: \(\dfrac{1}{bc-a^2}+\dfrac{1}{ca-b^2}+\dfrac{1}{ab-c^2}=0\)
Chứng minh rằng: \(\dfrac{a}{\left(bc-a^2\right)^2}+\dfrac{b}{\left(ca-b^2\right)^2}+\dfrac{c}{\left(ab-c^2\right)^2}=0\)
Cho biểu thức P=\(\frac{a^2}{ab+b^2}+\frac{b^2}{ab+a^2}-\frac{a^2+b^2}{ab}\)
Tính giá trị của P biết a,b thỏa mãn điều kiện
\(3a^2+3b^2=ab\) và a>b>0
Cho biết a,b,c là các số thực khác 0 thỏa mãn: \(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=1\)
và \(a=b+c\)
Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=1\)
cho các số dương thỏa mãn (b+c)/a^2+(a+c)/b^2+(a+b)/c^2=2(1/a+1/b+1/c). tính gtbt: P= (a-b)^2017 + (b-c)^2017 + (c-a)^2017
với a,b,c là số thực không âm thỏa mãn a+b+c=1
tính GTLN của biểu thức P=4ab+2bc+ca
Cho x, y thỏa mãn \(x^2+y^2=1\) . Tìm min, max: \(A=\sqrt{3}xy+y^2\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\) Tính giá trị biểu thức: \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}-\dfrac{ab}{c^2}\)