cho 3 số x,y,z thỏa mãn x^2+y^2 +z^2=xy+yz+xz và x+y+z=-3 .Tính B = x^2020 +y^2021+z^2022
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
Cho x,y,z thỏa mãn x+y+z=7;x^2+y^2+z^2=23,xyz=3
Tính H=1/xy+z-6+1/yz+x-6+1/zx+y-6
Tìm cặp số nguyên x,y thỏa mãn :
a/ \(3\left(x^2+xy+y^2\right)=x+8y\)
b/ \(y^4=x^6+3x^3+1\)
c/ \(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\)
Thực hiện phép tính:
a) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
b) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
c) \(\dfrac{xy}{ab}+\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}-\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)
d) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
1.(\(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\)) :(\(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\))
Bài 1:Chứng minh rằng
1,77n+1+77n chia hết cho 78
2,n2(n-1)+(n2-n) chia hết cho 6
3,(2n+1)3-(2n+1) chia hết cho 8
Baif Tìm các cặp số nguyên x y thỏa mãn
a, x+y=xy
b xy-x+2(y-1)=13
Nhanh lên nha!Thank!!!!!!!!!!
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+z biết rằng x,y,z là các số thỏa mãn điều kiện y^2+yz+z^2= 2- 3x^2/2
cho biểu thức: N=\(\left(\frac{x^2}{x^2-y^2}+\frac{y^2}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a)Rút gọn N
b) Tính giá trị của N biết x+y=\(\frac{1}{40}\); xy=\(-\frac{1}{80}\)