Cho a,b,c,x,y,z là các số nguyên dương và 3 số a,b,c khác 1 thỏa mãn: \(a^x=bc;b^y=ca;c^z=ab\)
CMR:
x+y+z+2=xyz.
Tìm các số nguyên dương x,y thỏa mãn điều kiện: 2^x+2^y=64
a) Cho bốn số dương a , b , c , d thỏa mãn điều kiện a + c = 2b và c ( b + d ) = bd .
\((\dfrac{a+c}{b+d})^8\) = \(\dfrac{a^8+c^8}{b^8+d^8}\)
b) Cho 4 số a , b , c , d . Biết a = 3b = 4c = 5d và ab - c2 - d2 = 831 . Tính b - c .
Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện: \(M=a+b=c+d=e+f\)
Biết a,b,c,d,e,f thược tập hợp N* và \(\dfrac{a}{b}=\dfrac{14}{22};\dfrac{c}{d}=\dfrac{11}{13};\dfrac{e}{f}=\dfrac{13}{17}\)
Cho các số dương a,b,c,d thỏa mãn các điều kiện a2+c2=1 và \(\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\).
Chứng minh rằng: \(\dfrac{a^{2014}}{b^{1007}}+\dfrac{c^{2014}}{d^{1007}}=\dfrac{2}{\left(b+d\right)^{1007}}\)
tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện:
M=a+b=c+d=e+f , biết a,b,c,d,e,f thuộc tập hợp N* và \(\dfrac{a}{b}=\dfrac{14}{22}\); \(\dfrac{c}{d}=\dfrac{11}{13}\) ; \(\dfrac{e}{f}=\dfrac{13}{17}\)
Cho 69 số nguyên dương phân biệt, trong đó mỗi số có giá trị không vượt quá 100. CMR có thể chọn ra 4 số phân biệt a,b,c,d sao cho \(a^2+b^2+c^2+d^2\) là tổng của 3 số chính phương khác 0
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Cho các số nguyên dương x, y, z thỏa mãn \(x^2+y^2=z^2\). Chứng minh rằng:
\(x+3z-y\) là hợp số.