Cho a,b là các số thực thỏa mãn a2+b2-ab=4.CMR \(\dfrac{8}{3}\le a^2+b^2\le8\)
Tìm các số a và b biết rằng a3+b3 = 152,a2 + b2 - ab = 19,a - b = 2
Tui đang cần gấp giải giúp tui với
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\dfrac{ab}{a+2b}+\dfrac{bc}{b+2c}+\dfrac{ca}{c+2a}\)
cho a,b,c ≥ 0 thỏa mãn a2 + b2 + c2 ≤ 8. Tìm GTLN của
\(M=4\left(a^3+b^3+c^3\right)-\left(a^4+b^4+c^4\right)\)
Cho x,y,z là các số dương thỏa mãn: \(x+y\ge10\). Tìm GTNN của \(A=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
Cho a b c là 3 số thực dương thỏa a+b+c=1 CM a2/a+b+b2/b+c+c2/c+a>=1/2
Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Min của: \(A=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{6abc}{ab+bc+ac}\)
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c
Cho a, b, c thuộc số thực dương, thỏa mãn a2+b2+c2=3
CMR : (a2b+b2c+c2a)(a+b+c)≥9abc
(c2 là c^2 nha...)