Bài 4: Bất phương trình bậc nhất một ẩn.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lưu ly

Cho các số a, b, c, x, y, z thoả mãn a, b, c khác −2 và 2x=by+cz, 2y=cz+ax, 2z=ax+by . Tính giá trị biểu thức

Trần Tuấn Hoàng
1 tháng 4 2022 lúc 22:28

\(2x-2y=by+cz-cz-ax=by-ax\)

\(\Rightarrow2x-2y=by-ax\)

\(\Rightarrow2x+ax=2y+by\)

\(\Rightarrow x\left(a+2\right)=y\left(b+2\right)\)

\(\Rightarrow a+2=\dfrac{y\left(b+2\right)}{x}\)

\(2z-2y=ax+by-cz-ax=by-cz\)

\(\Rightarrow2z+cz=2y+by\)

\(\Rightarrow z\left(c+2\right)=y\left(b+2\right)\)

\(\Rightarrow c+2=\dfrac{y\left(b+2\right)}{z}\)

\(A=\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}=\dfrac{2}{\dfrac{y\left(b+2\right)}{x}}+\dfrac{2}{b+2}+\dfrac{2}{\dfrac{y\left(b+2\right)}{z}}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2}{b+2}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2y}{y\left(b+2\right)}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x+2y+2z}{y\left(b+2\right)}=\dfrac{by+cz+cz+ax+ax+by}{by+2y}=\dfrac{2\left(ax+by+cz\right)}{by+cz+ax}=2\)

 


Các câu hỏi tương tự
Linh Nhật
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thánh Quân Nguy Hiểm
Xem chi tiết
Mộc Hạ Nhi
Xem chi tiết
OoO Min min OoO
Xem chi tiết
bảo phạm
Xem chi tiết
Đỗ Anh Quân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết