\(f\left(x+3\right)=g\left(x\right)+x^2-10x+5\)
\(\Rightarrow f'\left(x+3\right)=g'\left(x\right)+2x-10\)
Thế \(x=1\) ta được:
\(f'\left(4\right)=g'\left(1\right)-8\)
\(\Rightarrow g'\left(1\right)=f'\left(4\right)+8=13\)
\(f\left(x+3\right)=g\left(x\right)+x^2-10x+5\)
\(\Rightarrow f'\left(x+3\right)=g'\left(x\right)+2x-10\)
Thế \(x=1\) ta được:
\(f'\left(4\right)=g'\left(1\right)-8\)
\(\Rightarrow g'\left(1\right)=f'\left(4\right)+8=13\)
1. Cho hàm số \(y=x^3-3mx^2+3\left(2m-1\right)x+1\) . Với giá trị nào của m thì \(f'\left(x\right)-6x>0\) với mọi x>2
A. m > 1/2 B. m < -1/2 C. m >1 D. m ≤ 0
2. Cho hai hàm số f(x) và g(x) đều có đạo hàm trên R và thỏa mãn :
\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) với mọi x thuộc R.
Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
3. Biết hàm số f(x) - f(2x) có đạo hàm bằng 18 tại x=1 và đạo hàm bằng 2000 tại x=2. Tính đạo hàm của hàm số f(x) - f(4x) tại x=1
Cho hàm số y=f(x) có đạo hàm trên R và thỏa mãn f(1+3x)=2x-f(1-2x) với mọi \(x\in R\) . Lập phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1 .
y=f(x) xác định có đạo hàm trên R thỏa mãn : \(\left[f\left(1+2x\right)\right]^2=x-\left[f\left(1-x\right)\right]^3\) . Viết phương trình tiếp tuyến tại điểm có hoành độ x =1 .
Xác định m để bất phương trình sau nghiệm đúng với mọi \(x\in R\)
a) \(f'\left(x\right)>0\) với \(f\left(x\right)=\dfrac{m}{3}x^3-3x^2+mx-5\)
b) \(g'\left(x\right)< 0\) với \(g\left(x\right)=\dfrac{m}{3}x^3-\dfrac{m}{2}x^2+\left(m+1\right)x-15\)
đạo hàm các hàm số sau:
1.y=\(\dfrac{\sqrt{x+1}}{x}\)
2.\(\dfrac{x}{1-x^2}\)
3. y=\(\dfrac{1}{x-\sqrt{x+1}}\)
cho f(x)=\(x^2+\dfrac{1}{x^2}\) tìm x để y'=0
y=\(\sqrt{1+\sqrt{1+x}}\) tìm x để f(x).f'(x)=\(\dfrac{1}{2\sqrt{2}}\)
1. Tính đạo hàm của các hàm số sau:
a, \(y=\dfrac{2x-1}{x-1}\)
b, \(y=\dfrac{2x+1}{1-3x}\)
c, \(y=\dfrac{x^2+2x+2}{x+1}\)
d, \(y=\dfrac{2x^2}{x^2-2x-3}\)
e, \(y=x+1-\dfrac{2}{x-1}\)
g, \(y=\dfrac{2x^2-4x+5}{2x+1}\)
2. Tính đạo hàm của các hàm số sau:
a, \(y=\left(x^2+x+1\right)^4\)
b, y= (1-2x2)5
c, \(y=\left(\dfrac{2x+1}{x-1}\right)^3\)
d, \(y=\dfrac{\left(x+1\right)^2}{\left(x-1\right)^3}\)
e, \(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
f, \(y=\left(3-2x^2\right)^4\)
Cho f(x)=\(\sqrt{2+x}+\sqrt{7-x}-\sqrt{\left(2+x\right)\left(7-x\right)}\)
a, Tính đạo hàm của f(x)
b, Tìm những điểm mà tại đó đạo hàm bằng 0 hoặc không xác định
tính đạo hàm của hàm số f(x)= \(\sqrt{ }\)4 - 3x tại x0 = -4
Giải các bất phương trình :
a) \(f'\left(x\right)>0\) với \(f\left(x\right)=\dfrac{1}{7}x^7-\dfrac{9}{4}x^4+8x-3\)
b) \(g'\left(x\right)\le0\) với \(g\left(x\right)=\dfrac{x^2-5x+4}{x-2}\)
c) \(\varphi'\left(x\right)< 0\) với \(\varphi\left(x\right)=\dfrac{2x-1}{x^2+1}\)