Cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=\left(2m+1\right)x+1-m^2\) (với m là tham số). Tìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\). Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Cho \(\left(P\right):y=x^2\) và (d):\(y=2.\left(m-1\right)x+m^2+2m\). Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Cho hệ phương trình: \(\left\{{}\begin{matrix}2\left(x+y\right)+m\left|x\right|=2m+2\\m\left(5x+5y\right)-2\left|x\right|=m\end{matrix}\right.\). CMR nếu (x;y) là nghiệm của hệ phương trình thì (x+y-1)(5x+5y-1)=2|x|-x2
cho hệ phương trình \(\left\{{}\begin{matrix}2\left(x+y\right)+m\left|x\right|=2m+2\\m\left(5x+5y\right)-2\left|x\right|=1\end{matrix}\right.\)
a) giải hệ phương trình với m=1
b) cmr nếu x,y là nghiệm của hệ phương trình thì \(\left(x+y-1\right)\left(5x+5y-1\right)=2\left|x\right|-x^2\)
Cho đường thẳng (D) có phương trình: \(\left(m-1\right)x+\left(3m-4\right)y=-2m-5\)
a, Tìm m để đường thẳng (D) song song với trục hoành
b, Tìm m để đường thẳng (D) song song với trục tung.
Bài 1: Cho biểu thức :
\(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\left(x\ge0;x\ne9\right)\)
a) Rút gọn A
b) Tìm tất cả các giá trị của x để A ≥ 0
Bài 2:
a) Trong hệ trục tọa độ Oxy cho hai đường thẳng (d1) : y = (m2 -1)x + 2m (m là tham số) và (d2): y = 3x + 4. Tìm các giá trị của m để 2 đường thẳng song song với nhau.
b) Cho phương trình: x2 - 2(m - 1)x + 2m - 5 = 0 (m là tham số). Tìm các giá trị của m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x12 - 2mx1 + 2m - 1)(x1 - 2) ≤ 0
Bài 3: Cho 3 số thực x,y,z thỏa mãn: x + y + z ≤ \(\frac{3}{2}\)
Tìm GTNN của biểu thức: \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Cho y=(m+1)x-2m-5 \(\left(d_1\right)\) ; y=-2x \(\left(d_2\right)\) và y=9-5x \(\left(d_3\right)\) . Tìm m để 3 đường thẳng trên đồng quy
Cho đường thẳng \(\left(d\right):\left(m-2\right)x+\left(m-1\right)y=1\) (m là tham số). CMR: Các đường thẳng trên luôn luôn đi qua một điểm cố định với mọi giá trị của m.