Cho \(\left(P\right):y=\dfrac{1}{2}x^2\) và đường thẳng \(\left(d\right):y=mx+m+5\)
a) Chứng minh rằng với mọi giá trị của tham số m thì
+ Đường thẳng (d) luôn đi qua một điểm cố định, tìm tọa độ điểm đó
+ Đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt
b) Tìm tọa độ hai điểm A và B phụ thuộc (P) sao cho A đối xứng với B quá điểm M(-1;5)
Trong mặt phẳng Oxy , cho hai đường thẳng \(\left(d1\right):y=-mx+m+1\) và đường thẳng \(\left(d2\right):y=\frac{1}{m}x-1-\frac{5}{m}\) và m là một tham số khác 0 .
a) Chứng minh rằng (d1 ) và (d2 ) luôn vuông góc với nhau với mọi giá trị m ≠ 0
b) Tìm điểm cố định mà (d1 ) luôn luôn đi qua .Chứng minh giao điểm của hai đường thẳng luôn nằm trên
một đường cố định .
Cho hai đường thẳng: \(\left(d_1\right):y=4mx-\left(m+5\right)\) với m≠0
\(\left(d_2\right):y=\left(3m^2+1\right)x+\left(m^2-4\right)\)
a, Chứng minh rằng khi m thay đổi thì đường thẳng (\(d_1\)) luôn đi qua một điểm A cố định; đường thẳng (d\(_2\)) luôn đi qua một điểm B cố định.
b, Tính khoảng cách AB.
c, Với giá trị nào của m thì (d\(_1\))//(d\(_2\)) ?
d, Với giá trị nào của m thì (d\(_1\)) cắt (d\(_2\)) ? Tìm tọa độ giao điểm khi m=2
Cho hai đường thẳng: (d1): \(mx+\left(m-2\right)y+m+2=0\)và (d2): \(\left(2-m\right)x+my-m-2=0\).
a) Tìm điểm cố định mà luôn đi qua và điểm cố định mà luôn đi qua với mọi m
b) Chứng minh hai đường thẳng , luôn cắt nhau tại một điểm I và khi m thay đổi thì điểm I luôn thuộc một đường tròn cố định.
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
Cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=\left(2m+1\right)x+1-m^2\) (với m là tham số). Tìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung
Cho các đường thẳng \(y=\left(2m+1\right)x-4m+1;y+2m^2-1=\left(m^2+m+1\right)x-2m;\left(3m-1\right)x+\left(2-2m\right)y=1\) . Cmr các đường thẳng trên cùng đi qua một điểm
Đường thẳng \(\left(d\right):y=\left(m^2-1\right)x-m^2+3\) luôn đi qua điểm cố định A (a;b). Vậy (a,b)
Câu 1:
a, Cmr \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
b, Cho đường thẳng y=(m-2)x+2 (d). Cmr đường thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
Câu 2 : Gọi a,b,c là độ dài các cạnh của 1 tam giác biết : (a+b)(b+c)(c+a)=8abc. Cmr tam giác đó là tam giác đều