\(A-B=a^4+ab^4+a^4b+b^5-a^5-a^2b^3-a^3b^2-b^5\)
\(=ab^4+a^4b-a^2b^3-a^3b^2\)
\(=ab\left(b^3+a^3\right)-ab\left(a+b\right)\)
\(=ab\left(a+b\right)\left(a^2-ab+b^2-1\right)>0\)
=>A>B
\(A-B=a^4+ab^4+a^4b+b^5-a^5-a^2b^3-a^3b^2-b^5\)
\(=ab^4+a^4b-a^2b^3-a^3b^2\)
\(=ab\left(b^3+a^3\right)-ab\left(a+b\right)\)
\(=ab\left(a+b\right)\left(a^2-ab+b^2-1\right)>0\)
=>A>B
CMR
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
Chứng minh:
a. \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
b. \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
c. \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
d. \(\left(a+b+c\right)\left(x+y+z\right)\ge3\left(ax+by+cz\right)\) (Gợi ý: Bất đẳng thức Trê-bư-xếp)
Giúp em với! <3
chứng minh bất đẳng thức \(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)vớia>0;b< 0\)
Cho 2 số a,b thỏa mãn : \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\). Tính giá trị của biểu thức M=\(2018\left(a+b\right)^2\)
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
Cho a,b,c là các số dương.Chứng minh:
\(\left(a+b\right)\left(a^4+b^4\right)\)≥\(\left(a^2+b^2\right)\left(a^3+b^3\right)\)
Cho \(x+y+z=0\)
Chứng minh rằng: \(a^5\left(b^2+c^2\right)+b^5\left(a^2+c^3\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Áp dụng bất đẳng thức cosi chứng minh
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với a,b \(\ge\)0
\(\left(a+b\right).\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\) 4 với a,b > 0
\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\) 9 với a,b,c > 0
\(a^2+b^2+c^2\ge ab+bc+ca\)