a) Với \(\left\{{}\begin{matrix}a>0\\a\notin\left\{1;4\right\}\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\sqrt{a}-1\ne0\\\sqrt{a}>0\\\sqrt{a}-2\ne0\\\sqrt{a}-1\ne0\end{matrix}\right.\)và \(\frac{\sqrt{a}+1}{\sqrt{a}-2}\ne\frac{\sqrt{a}+2}{\sqrt{a}-1}\)
nên Q được xác định(đpcm)
b) Ta có: \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
Để Q dương thì \(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}>0\)
\(\Leftrightarrow\sqrt{a}-2\) và \(3\sqrt{a}\) cùng dấu
mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\)
\(\Leftrightarrow\left|a\right|>4\)
\(\Leftrightarrow\left[{}\begin{matrix}a< -4\\a>4\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được: a>4
Vậy: Khi a>4 thì Q dương