a) ĐKXĐ: \(x\ge0\)
b) \(Q=\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\dfrac{\sqrt{a}-1}{\left(\sqrt{a}+1\right)^2}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
Vậy \(Q=\dfrac{\sqrt{a}+1}{\sqrt{a}}\).