\(Q=\left(\dfrac{1}{2\left(1+\sqrt{a}\right)}+\dfrac{1}{2\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right).\dfrac{a+1}{a}\)
\(Q=\dfrac{\left(1-\sqrt{a}\right)\left(1+a\right)+\left(1+\sqrt{a}\right)\left(1+a\right)-2\left(a^2+1\right)}{2\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}.\dfrac{a+1}{a}\)
\(Q=\dfrac{\left(1+a\right)\left(1-\sqrt{a}+1+\sqrt{a}\right)-2a^2-2}{2a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{2\left(1+a\right)-2a^2-2}{2a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{1+a-a^2-1}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{a-a^2}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{a\left(1-a\right)}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=1\)
vậy