Cho biểu thức : P= 1+\(\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a,Rút gọn P .
b,Chứng minh rằng \(P>\dfrac{2}{3}\)
c,Cho \(P=\dfrac{\sqrt{6}}{1+\sqrt{6}}\) ,tìm giá trị của a?
Cho a,b,c > 0 thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\sqrt{a^2-ab+b^2}}{\sqrt{ab+1}}+\dfrac{\sqrt{b^2-bc+c^2}}{\sqrt{bc+1}}+\dfrac{\sqrt{c^2-ca+a^2}}{\sqrt{ca+1}}\)
Ace Legona giải giúp e vs
Cho a=\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
Chứng minh rằng a là một nghiệm của phương trình:
\(2013x^2-2014x+1\)
Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)và B=\(\dfrac{x-5}{x-1}\)-\(\dfrac{2}{\sqrt{x}+1}\)+\(\dfrac{4}{\sqrt{x}-1}\)với x≥0;x≠1
1. Tính giá trị của biểu thức A tại x=36
2.Chứng minh rằng B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. Đặt P=A/B.Tìm các giá trị x nguyên để \(\sqrt{P}\)<1/2
Cho biểu thức A= \(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a, Tìm đkxđ
b, Rút gọn
c, CHo x>1. Chứng minh A- giá trị tuyệt đối A = 0
Cho biêu thức A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a. RG A
Cho biểu thức A=\(\dfrac{\sqrt{x}+8}{x+7}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\sqrt{x}+24}{x-9}\) với (\(x\ge0,x\ne9\) )
Tìm giá trị nhỏ nhất của biểu thức P=\(\sqrt{\dfrac{B}{A}}\)
1/Giải phương trình:
a. \(3x+4y=5\sqrt{x^2+y^2}\)
b. \(\dfrac{xy\sqrt{z-5}+xz\sqrt{y-4}+yz\sqrt{x-3}}{xyz}=\dfrac{10\sqrt{3}+15+6\sqrt{5}}{60}\)
c. \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{2018}{2019}\)
d.\(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)
e. \(\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-1}}{y}=1\)
2/Giải phương trình:
a.\(\sqrt{x-2}-\sqrt{2x-3}=\dfrac{1-x}{2x-3}\)
b.\(x^2+\dfrac{x^2}{\left(x+1\right)^2}=3\)
Cho a, b, c > 25/4, tìm GTNN của biểu thức: M=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
giúp mk nhá, thanks nhìu :>>>