Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhan Thanh

Cho biểu thức \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x}{x-2\sqrt{x}+1}\) ( \(x>0;x\ne1\) )

1. Rút gọn biểu thức

2. Tìm giá trị của \(x\) để \(P>\dfrac{1}{2}\)

Giúp câu 2 với ạ

Akai Haruma
23 tháng 7 2021 lúc 11:00

Lời giải:
1. \(P=\left[\frac{1}{\sqrt{x}(\sqrt{x}-1)}+\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}\right]:\frac{x}{(\sqrt{x}-1)^2}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)^2}{x}=\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{x\sqrt{x}}=\frac{x-1}{x\sqrt{x}}\)

2.

\(P>\frac{1}{2}\Leftrightarrow \frac{x-1}{x\sqrt{x}}> \frac{1}{2}\)

\(\Leftrightarrow \frac{2x-2-x\sqrt{x}}{2x\sqrt{x}}>0\)

\(\Leftrightarrow 2x-2-x\sqrt{x}>0\)

\(\Leftrightarrow x\sqrt{x}+2< 2x\) 

Điều này vô lý do theo BĐT Cô-si thì:\(x\sqrt{x}+2=\frac{x\sqrt{x}}{2}+\frac{x\sqrt{x}}{2}+2\geq 3\sqrt[3]{\frac{x^3}{2}}>\frac{3x}{\sqrt[3]{2}}> 2x\)

Vậy không tồn tại $x$ thỏa mãn.

Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 12:03

1) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{x}\)

\(=\dfrac{x-1}{x\sqrt{x}}\)


Các câu hỏi tương tự
Ngoc Anh Thai
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
H T T
Xem chi tiết
Vangull
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Thanh Trúc
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Mai Anh Phạm
Xem chi tiết