a,
P xác định
\(\Leftrightarrow x\ne2\)
b,
\(P=\left(\dfrac{2x}{x-2}+\dfrac{x}{2-x}\right):\dfrac{x-2}{x^2+1}\)\(=\left(\dfrac{2x}{x-2}-\dfrac{x}{x-2}\right)\cdot\dfrac{x^2+1}{x-2}\)
\(=\dfrac{x}{x-2}\cdot\dfrac{x^2+1}{x-2}=\dfrac{x\left(x^2+1\right)}{\left(x-2\right)^2}\)
c,
\(x=-1\)\(\Rightarrow P=\dfrac{-1\left[\left(-1\right)^2+1\right]}{\left(-1-2\right)^2}=\dfrac{-2}{9}\)
d,