a) ĐK ko bt đúng or sai
ĐKXĐ : \(\left\{{}\begin{matrix}x>=0\\x\ne0\\x\ne1\end{matrix}\right.\)
P =( \(\dfrac{1}{\left(\sqrt{x}\right)^2-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\)) . \(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
= \(\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}-1}\right).\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
=\(\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
=\(\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\sqrt{x}-1\)
\(\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\sqrt{x}-1\)
=\(\dfrac{-\sqrt{x}+1}{\sqrt{x}}\)
a: ĐKXĐ: x<>0; x<>1
\(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{x-2\sqrt{x}+1}=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
b: Khi x=9 thì \(A=\dfrac{-1}{3\left(3-1\right)}=\dfrac{-1}{6}\)