\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\)
\(5M=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(5M=1+\frac{1}{5}+...+\frac{1}{5^{49}}\)
\(5M-M=\left(1+\frac{1}{5}+...+\frac{1}{5^{49}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(4M=1-\frac{1}{5^{50}}\)
\(M=\frac{1-\frac{1}{5^{50}}}{4}< \frac{1}{4}=0,25\)
Đpcm