a, ĐKXĐ: \(x\ne1;x\ge0\)
b, \(C=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{1-\sqrt{x}}\)
\(\Leftrightarrow C=\dfrac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(\Leftrightarrow C=\dfrac{3\left(x+\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow C=\dfrac{3x+3\sqrt{x}-3-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow C=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
c, \(C=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1-2}{\sqrt{x}-1}=1-\dfrac{2}{\sqrt{x}-1}\)
Để C nguyên thì \(\dfrac{2}{\sqrt{x}-1}\) cũng nguyên
\(\Rightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do: \(\sqrt{x}\ge0\) nên \(\sqrt{x}-1\ge-1\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;-1;2\right\}\)
\(\Rightarrow x\in\left\{4;0;9\right\}\)(đều thỏa mãn ĐKXĐ và x\(\in\)Z )
Câu a : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Câu b : \(C=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{1-\sqrt{x}}\)
\(=\dfrac{3x+\sqrt{9x}-3-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
Câu c : Thực hiện phép tính chia \(\sqrt{x}-3:\sqrt{x}-1\) ta được số dư là \(-2\) .
Do đó để C đạt giá trị nguyên thì : \(\sqrt{x}-1\inƯ\left(-2\right)\)
Mà : \(\sqrt{x}-1\ge-1\) .
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1=-1\\\sqrt{x}-1=1\\\sqrt{x}-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\\x=9\end{matrix}\right.\)
Vậy \(x=0;x=4;x=9\) thì C đạt giá trị nguyên .
Chúc bạn học tốt