a) \(ĐKXĐ:0< x;x\ne1\)
b) Có : \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để \(A=\frac{1}{3}\) thì \(\frac{\sqrt{x}-1}{\sqrt{x}}=\frac{1}{3}\Rightarrow\sqrt{x}=3\left(\sqrt{x}-1\right)\Leftrightarrow-2\sqrt{x}=-3\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TMĐKXĐ\right)\)
Vậy \(x=\frac{9}{4}\) thì \(A=\frac{1}{3}\)