a: \(P=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b: Để A>1/6 thì A-1/6>0
\(\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}>0\)
\(\Leftrightarrow2\sqrt{a}-4-\sqrt{a}>0\)
\(\Leftrightarrow\sqrt{a}>4\)
hay a>16
c: Để A=0 thì \(\sqrt{a}-2=0\)
hay a=4(loại)