a) \(A=\left(\dfrac{2a+1}{\sqrt{a^3}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\left(đk:a\ge0,a\ne1\right)\)
\(=\dfrac{2a+1-\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left[\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right]\)
\(=\dfrac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(a-\sqrt{a}+1-\sqrt{a}\right)\)
\(=\dfrac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(\sqrt{a}-1\right)^2\)
\(=\sqrt{a}-1\)
b) \(A=\sqrt{a}-1=6\)
\(\Leftrightarrow\sqrt{a}=7\Leftrightarrow a=49\)