\(C=\left(\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)^2}+\sqrt{a}\)
\(=\left(1-2\sqrt{a}+a\right).\dfrac{1}{\left(\sqrt{a}-1\right)^2}+\sqrt{a}\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2}+\sqrt{a}=\sqrt{a}+1\)
Để \(C=3\Rightarrow\sqrt{a}+1=3\Rightarrow\sqrt{a}=2\Rightarrow a=4\)