Lời giải:
a)
\(A=\frac{x}{x-1}-\frac{2}{x+1}-\frac{2}{x^2-1}\)
\(=\frac{x(x+1)-2(x-1)}{(x-1)(x+1)}-\frac{2}{(x-1)(x+1)}\)
\(=\frac{x^2-x+2}{(x-1)(x+1)}-\frac{2}{(x-1)(x+1)}=\frac{x^2-x}{(x-1)(x+1)}=\frac{x(x-1)}{(x-1)(x+1)}\)
\(=\frac{x}{x+1}\)
b) Tại $x=2$ thì \(A=\frac{2}{2+1}=\frac{2}{3}\)
c) Ta có: \(\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\)
Để \(A\in\mathbb{Z}\Rightarrow 1-\frac{1}{x+1}\in\mathbb{Z}\Rightarrow \frac{1}{x+1}\in\mathbb{Z}\Rightarrow 1\vdots x+1\)
\(\Rightarrow x+1\in \text{Ư}(1)\Rightarrow x+1\in \left\{\pm 1\right\}\)
\(\Rightarrow x\in \left\{-2;0\right\}\)