Cho mình sửa đề một chút nha
\(A=\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}\)(*)
Theo bài ra , ta có :
\(\left(+\right)a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^2=c^2\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Leftrightarrow a^2+b^2-c^2=-2ab\) (1)
\(\left(+\right)a+b+c=0\)
\(\Leftrightarrow b+c=-a\)
\(\Leftrightarrow\left(b+c\right)^2=a^2\)
\(\Leftrightarrow b^2+2bc+c^2=a^2\)
\(\Leftrightarrow b^2+c^2-a^2=-2bc\) (2)
\(\left(+\right)a+b+c=0\)
\(\Leftrightarrow a+c=-b\)
\(\Leftrightarrow\left(a+c\right)^2=b^2\)
\(\Leftrightarrow a^2+2ac+c^2=b^2\)
\(\Leftrightarrow a^2+c^2-b^2=-2ac\) (3)
Thay (1) , (2) , (3) vào (*) ta được
\(A=\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}\)
\(=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}+-\dfrac{1}{2}+-\dfrac{1}{2}=-\dfrac{3}{2}\)
Vậy \(A=-\dfrac{3}{2}\)
Chúc bạn học tốt =))