a,A=(\(\dfrac{x}{x^2+2x}+\dfrac{x}{x^2-2x}\))(1-\(\dfrac{2}{x}\))
=\(\dfrac{x\left(x-2\right)+x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}.\dfrac{x-2}{x}\)
=\(\dfrac{x\left(x-2+x+2\right)}{x\left(x-2\right)\left(x+2\right)}.\dfrac{x-2}{x}\)
=\(\dfrac{2}{x+2}\)
Vậy.....
b, /A/\(\ge\)0 \(\forall\)x
Để /A/+A=0 thì A\(\le\)0
<=>\(\dfrac{2}{x+2}\le0\)
<=>x+2\(\le\)0
<=>x\(\le\)-2
Mà ĐKXĐ: x\(\ne\)-2
=> x<-2
Vậy để /A/+A=0 thì x<2