Cho x,y,z là ba số thực dương thỏa mãn x+y+z=\(\sqrt{2}\). Tìm Min T=\(\sqrt{(x+y)(y+z)(x+z)}(\frac{\sqrt{y+z}}{x}+ \frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z})\)
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
1. Cho các số thực x, y, z thỏa mãn điều kiện \(\left\{{}\begin{matrix}x-y+z=3\\x^2+y^2+z^2=5\end{matrix}\right.\)
\(P=\dfrac{x+y-2}{z+2}\) đạt giá trị lớn nhất là bao nhiêu?
2. Cho \(f\left(x\right)=2021x^2+\dfrac{6y^2}{2021}-4xy-\dfrac{y}{2021}+x+\dfrac{m^2}{2021}\)
Tìm m để \(f\left(x\right)>0\forall x,y\)
3. Cho hệ bất phương trình \(\left\{{}\begin{matrix}\left|x+1\right|\le1\\\dfrac{x}{m}< 1\end{matrix}\right.\) (m ≠ 0 là tham số thực)
Tìm tất cả các giá trị của tham số m để hệ bpt có đúng 3 nghiệm nguyên
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho 3 số thực dương x, y, z thỏa mãn \(x^3+y^3+z^3=1\). CMR:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xyz=1. Chứng minh rằng
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge3\sqrt{3}\)
2) Cho a,b,c là các số dương thỏa mãn điều kiện: a>b; a+b+c=4
Tìm GTNN của biểu thức \(P=4a+3b+\dfrac{c^3}{\left(a-b\right)b}\)
@Ace Legona @TFboys