a+b+c=0
<=> (a+b+c)2=0
<=> a2+b2+c2+2ac+2ab+2bc=0
<=> (a2+b2+c2)+2(ab+ac+bc)=0
do a2+b2+c2≥0 ∀ a,b,c
=> 2(ab+ac+bc)≤0
<=> ab+ac+bc ≤0(đpcm)
a+b+c=0
<=> (a+b+c)2=0
<=> a2+b2+c2+2ac+2ab+2bc=0
<=> (a2+b2+c2)+2(ab+ac+bc)=0
do a2+b2+c2≥0 ∀ a,b,c
=> 2(ab+ac+bc)≤0
<=> ab+ac+bc ≤0(đpcm)
Bài 1 :
a) Cho a , b , c là ba số thực thỏa mãn \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\) . Chứng minh rằng a = b = c
b) Cho a , b , là ba số thực thỏa mãn a + b + c = 0 . Chứng minh rằng \(a^3+b^3+c^3=3abc\)
c) Cho a , b , c là ba số thực thỏa mãn \(a^3+b^3+c^3=3abc\) . Liệu có thể khẳng định rằng a + b + c = 0
Bài 1:
a) Cho a, b, c, d , là các số nguyên thỏa mãn a - b = c + d. Chứng minh rằng a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương
b) Cho a, b, c, d là các số nguyên thỏa mãn a + b + c + d = 0. Chứng minh rằng ( ab - cd )( bc - da )( ca - db ) là số chính phương
Cho a, b, c > 0 thỏa mãn a + b + c = 1. Chứng minh rằng:
Cho ba số thực dương a, b, c thỏa mãn a^2+b^2+c^2+(a+b+c)^2\(\le\) 4.
Chứng minh rằng: ab+1/(a+b)^2+bc+1/(b+c)^2+ca+1/(c+a)^2 \(\ge\) 3
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho 3 số a, b, c khác 0 thỏa mãn: ab+bc+ca=0. Hãy tính giá trị biểu thức \(N=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
1.Giải phương trình sau: [x-2015] + [2x-2016]= x-2017
2. Cho ba số thực a,b,c khác nhau thỏa mãn: \(a+\frac{2020}{b}=b+\frac{2020}{c}=c+\frac{2020}{a}\). Chứng minh rằng \(a^2+b^2+c^2=2020^3\)
3. Cho a,b,c là số dương thỏa mãn a+b+c=9. Chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
4. Chứng minh bất đẳng thức sau vớ a,b,c là các số dương: \(\left(a+b+c\right)\times\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
5. Cho a >0, b >0, c >0. Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Cho a, b, c>0
Chứng minh rằng: (a+b+c)^2\(\ge\) 3(ab+bc+ca) và ((a+b+c)^2/ab+bc+ca)+(ab+bc+ca/(a+b+c)^2)\(\ge\) 10/3
cho a,b,c dương thỏa mãn ab+bc+ca=1. Chứng minh a-b/1+c^2 + b-c/1+a^2 + c-a/1+b^2 = 0