Cho hình vuông ABCD và điểm M đối xứng với D qua C. H,K lần lượt là hình chiếu của C và D lên AM. I là tâm hình vuông. Biết B thuộc đường thẳng 5x + 3y - 10 = 0, K (1;1) và phương trình đường thẳng IH là 3x + y + 1 = 0. Tìm tọa độ B
Trong mp Oxy cho hình thang ABCD vuông tại A và D(2;2), CD=2AB. H là hình chiếu D trên AC, M là tđ HC. Bt pt DH:2x+y-5=0 BM: 4x+7y-61=0. Tìm tọa độ đỉnh
trong mp tọa độ Oxy, cho đg thg d: 2x-y+3=0 và 2 điểm A(1;0); B(2;1). tìm điểm M trên d sao cho MA+MB nhỏ nhất
Hình thang ABCD vuông tại A và D, AB=AD<CD, B(1;2), y=2 đường thẳng \(\Delta:7x-y-25=0\) cắt các đoạn AD,CD lần lượt tại M và N sao cho BM vuôn góc với BC, tia BN là tia phân giác trong góc MBC. Tìm tọa độ D biết D có hoành độ dương
Cho đường thẳng d: 3x+ 4y – 10 = 0, điểm M(1; 2). Tìm toạ độ điểm H hình chiếu của M trên d và điểm M' đối xứng với M qua d.
cho hai điểm A (3;4) và B (-1;2) ,đường thẳng Δ : x - 2y - 2=0 .Tìm tạo độ điểm M nằm trên Δ sao cho :
a ) MA2 +2MB2 nhỏ nhất
b ) |MA-MB| lớn nhất
trong mp oxy cho hbh ABCD có ac=2ab phương trình đường chéo bd x+y-1=0 điểm b có hoành độ âm gọi M là trung điểm của cạnh BC và E(3,4) là điểm thuộc đoạn thẳng ac sao cho AC=4AE.tìm tọa độ A,B,C,D biết diện tích tam giác DEC =4 và M nằm trên đcường thẳng d:2x-y=0
a) Cho hàm số \(y=x^2-2x+2\) có đồ thị (P) và đường thẳng (d) có pt y=x+m. Tìm m để đường thẳng (P) cắt (d) tại hai điểm phân biệt A, E sao cho \(OA^2+OB^2=82\)
b) Trong mp hệ tọa độ Oxy, cho hình thang vuông ABCD, \(\widehat{A}=\widehat{D}=90\) có đỉnh D(2;2) và CD=2AB. Gọi H là hình chiếu vuông góc của D lên đường chéo AC. Điểm \(M\left(\dfrac{22}{5};\dfrac{14}{5}\right)\) là trung điểm HC. Xác định tọa độ B, biết rằng B nằm trên đường thẳng \(\Delta:x-2y+4=0\)
cho đt d: 3x-4y+1=0 và M(-3;1)
a, xác định vị trí tương đối của M và d
b, tìm tọa độ hình chiếu của M trên d
c, tìm tọa độ M' đối xứng với M qua d