Ta có :
\(A=\dfrac{\left(\sqrt{2000}-\sqrt{1999}\right)\left(\sqrt{2000}+\sqrt{1999}\right)}{\left(\sqrt{2000}+\sqrt{1999}\right)}=\dfrac{1}{\sqrt{2000}+\sqrt{1999}}\)
\(B=\dfrac{\left(\sqrt{2001}-\sqrt{2000}\right)\left(\sqrt{2001}+\sqrt{2000}\right)}{\left(\sqrt{2001}+\sqrt{2000}\right)}=\dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)
Do \(\sqrt{2000}+\sqrt{1999}< \sqrt{2001}+\sqrt{2000}\)
\(\Rightarrow A>B.\)
Bài làm:
Theo máy tính Vinacal 570ES PLUS II, ta có:
A>B
Đọc tiếp...