Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lưu Vũ Quang

Cho \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{2014\cdot2015\cdot2016}\).

Chứng minh \(A\le\dfrac{1}{4}\).

Xuân Tuấn Trịnh
30 tháng 4 2017 lúc 8:19

A=\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2014\cdot2015\cdot2016}=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2014\cdot2015}-\dfrac{1}{2015\cdot2016}\right)=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2015}\cdot\dfrac{1}{2016}\right)=\dfrac{1}{4}-\dfrac{1}{2\cdot2015\cdot2016}< \dfrac{1}{4}\)

Vậy A<\(\dfrac{1}{4}\)

---bé hơn hoặc bằng tức là chỉ cần xảy ra 1 khả năng cũng thõa mãn nhé---

Đẹp Trai Không Bao Giờ S...
30 tháng 4 2017 lúc 8:27

mìnhHỏi đáp Toán


Các câu hỏi tương tự
Nguyễn Lưu Vũ Quang
Xem chi tiết
Trần Nguyễn Anh Khôi
Xem chi tiết
ThiênTỷ Dịch Dương
Xem chi tiết
nữ thám tử nổi tiếng
Xem chi tiết
Nguyễn Phú Mạnh
Xem chi tiết
Nhân Mã
Xem chi tiết
BACH SY THANH THINH
Xem chi tiết
Omega Neo
Xem chi tiết
Phương
Xem chi tiết