Cho \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{2014\cdot2015\cdot2016}\).
Chứng minh \(A\le\dfrac{1}{4}\).
Cho \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{2014\cdot2015\cdot2016}\).
So sánh A với \(\dfrac{1}{4}\).
Tính giá trị biểu thức sau:
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\left(\dfrac{1}{4}-1\right)\cdot...\cdot\left(\dfrac{1}{99}-1\right)\cdot\left(\dfrac{1}{100}-1\right)\)
1/ Chứng tỏ rằng : B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{8^2}< 1\)
2/ Rút gọn: B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{20}\right)\)
3/ Tính giá trị của biểu thức: A= \(\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)
4/ So sánh : A= \(\dfrac{2011+2012}{2010+2013}\) và B= \(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
cho M=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\)
N=\(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\)
chứng minh rằng: M<\(\dfrac{1}{10}\)
Em cần gấp câu trả lời cho bài toán này, mong đc mn giúp đỡ (nếu được xin trả lời trước 12h ngày 10/5 giúp em ạ). Cảm ơn mn.
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+......+\dfrac{3}{59.61}\)
\(\left(x^2-4\right)\left(6-2x\right)=0\)
\(\dfrac{3}{2}-2x^2=-\dfrac{1}{2}\)
So sánh
\(A=\dfrac{10^{100}+1}{10^{101}+1}\)và\(B=\dfrac{10^{101}+1}{10^{102}+1}\)
530và12410
2711và818
536và1124
339 và 1121
\(1,4\cdot\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
Tính giá trị biểu thức
a, \(\dfrac{5.8-5.6}{10}\) b, \(\dfrac{\left(-4\right)^2}{5}\) B = \(\dfrac{3}{7}+\left(\dfrac{-1}{5}+\dfrac{-3}{7}\right)\) C = \(\left(6-2\dfrac{4}{5}\right).3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\)
D = \(\left(\dfrac{-5}{24}+0,75+\dfrac{7}{12}\right):\left(-2\dfrac{1}{8}\right)\) E = \(\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\) F = \(\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2\)
Tính bằng cách hợp lí: \(B=1\dfrac{6}{41}\cdot\left(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\right)\cdot\dfrac{124242423}{237373735}\)