Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{98}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}=A\)
\(\Leftrightarrow B>A\)
Ta áp dụng tính chất :
\(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ta có:
\(B=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}=A\)
\(\Leftrightarrow B>A\)
Chúc bạn học tốt!