Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho 5 số tự nhiên khác 0 và a ; b ; x ; y ; z thỏa mãn
a^2 + b^2 = x^2 + y^2 + z^2 .Hỏi tổng S có là số
nguyên tố hay không nếu S = a + b + x + y + z
Bài 1: Cho 2 số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y}\)
Bài 2:Cho 4 số nguyên dương a, b, c,d thỏa mãn \(\dfrac{1}{c}=\dfrac{1}{2}.\left(\dfrac{1}{b}+\dfrac{1}{d}\right)\), đồng thời b là trung bình cộng của a và c. Chứng minh rằng 4 số đó lập thành 1 tỉ lệ thức
Bài 3:
a) Chứng minh rằng nếu 2.(x+y) = 5.(y + z) = 2.(z +x) thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho p là tích của 2016 số nguyên tố đầu tiên. Chứng minh rằng p - 1 và p + 1 không là số chính phương
cho x,y,z là các số nguyên dương và x +y+z là số lẻ, các số thực a,b,c thỏa mãn \(\dfrac{a-b}{x}=\dfrac{b-c}{y}=\dfrac{a-c}{z}\) chứng minh rằng a= b= c.
Câu 1 : Cho hàm số y = f (x)= x2 - 1. Gía trị của f (-1) là:
A. -2 B. 0 C. -3 D. 1
Câu 2: Điểm thuộc đồ thị hàm số y = -2x là:
A. (-1; -2) B. (1/2; -4) C. (0;2) D. (-1; 2)
Câu 3: Cho biết x và y là hai đại lượng tỉ lệ thuận, biết khi x = 5 thì y = 15. Hệ số tỉ lệ của y đối với x là:
A. 1/3 B. 3 C. 75 D. 10
1,cho các số a,b,c,d thỏa mãn a/3b=b/3c=c/3d=d/3a.cmr a=b=c=d
2,tìm x,y biết x-y/3=x+y/13=xy/200
3,tìm x,y,z biết 15/x-y=20/y-12=40/z-24 và xy=1200
Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
B2 :
a. Cho đa thức f(x) = ax2 + 2bx + c. Biết 13a + 2b + 2c = 0. CMR : f(2).f(-3) \(\le0\)
b. Cho x,y,z là các số thực thỏa mãn \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tính giá trị của A = 2018.x + y2017 + z2017
Help me !!
tìm các số tự nhiên x, y sao cho a^2+b/b^2-a và b^2+a/a^2-b đều là số nguyên
Cho các số a, b, c, x, y, z thoả mãn a+b+c=a2+b2+c2=1 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).
CMR: ( x + y + z )2 = x2 + y2 + z2.