Ta có:
a2 + b2=(a+b)2-2ab=S2-2P
a3+b3=(a+b)3-3ab(a+b)=S3-3.S.P
a4+b4=(a2+b2)2-2a2b2=(S2-2P)2-2S2
a. \(A=a^2+b^2=\left(a+b\right)^2-2ab=s^2-2p\)
b. \(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=s\left(s^2-2p-p\right)=s\left(s^2-3p\right)\)
c. \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=\left(s^2-2p\right)^2-2p^2=s^4-4s^2p+2p^2\)
a) a+b=S => (a+b)2=S2 => a2+2ab+b2=S2 mà ab=P => 2ab=2P
=> a2+2P+b2=S2 =>A= a2+b2=S2-2P
b) B=a3+b3=(a+b)(a2-ab+b2)=> B=S.(S2-2P-P)=S(S2-3P)=S3-3S.P