\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bxz+cxy=0\left(1\right)\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xyc+ayz+xbz}{abc}\right)=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)(đpcm)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\Leftrightarrow ayz+bxz+cxy=0\)
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2-2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ac}\right)\)
\(=\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2-2\left(\dfrac{cxy+ayz+bzx}{abc}\right)\)\(=1-0=1\left(dpcm\right)\)