Ta áp dụng Cauchy 2 số
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\cdot2abcd\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu = khi \(\begin{cases}a^4=b^4\\c^4=d^4\\a^2b^2=c^2d^2\end{cases}\)\(\Rightarrow a=b=c=d\)
Nhanh hơn có thể dùng Cauchy 4 số
\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4b^4c^4d^4}\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu = khi các biến bằng nhau
\(\Leftrightarrow a=b=c=d\)