Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Huyền

Cho a+b+c+d=0. Chứng minh rằng: a3+b3+c3+d3=3(c+d)(ab-cd).

Nguyễn Lê Phước Thịnh
7 tháng 9 2022 lúc 9:42

a+b+c+d=0

=>c+d=-a-b

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=\left(a+b\right)^3+\left(-a-b\right)^3+3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(=3ab\left(c+d\right)-3cd\left(c+d\right)\)

=3(c+d)(ab-cd)


Các câu hỏi tương tự
Nguy?n Qu?c ??c Th?ng
Xem chi tiết
Đinh Thị Minh Ánh
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
ĐoànThùyDuyên
Xem chi tiết
Hiyashi Yuuki
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Lil Học Giỏi
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Kẹo Đắng
Xem chi tiết