Xét tứ giác BHCK có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo KH
Do đó: BHCK là hình bình hành
Ta có: BHCK là hình bình hành
nên BH//CK
mà BH\(\perp\)AC
nên CK\(\perp\)AC
hay \(\widehat{ACK}=90^0\)
Xét tứ giác BHCK có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo KH
Do đó: BHCK là hình bình hành
Ta có: BHCK là hình bình hành
nên BH//CK
mà BH\(\perp\)AC
nên CK\(\perp\)AC
hay \(\widehat{ACK}=90^0\)
cho tam giác ABC nhọn (AB<AC) đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D
a, cm tứ giác AHCK là hình chữ nhật
b, Gọi I,E lần lượt là trung điểm của BC và AB cm tứ giác EDCI là hình bình hành
c, tứ giác EBHI là hình thang cân
d, AH cắt DE tại M, BM cắt HE tại N,AN cắt BC tại L. Gọi O là trung điểm của MI , B là điểm đối xứng của L qua N cm C,O,N thẳng hàng
cho tg ABC cân tại A. Từ điểm D trên BC kẻ đường vuông góc với BC cắt AB, Ac lần lượt tại E, F. Dựng các hình chữ nhật BDEH và CDFK
a) CM: Ba điểm A, H, K thẳng hàng
b) CM: A là trung điểm của HK
c) Gọi I, J theo thứ tự là tâm của các hình chữ nhật BDEH và CDFK. Tìm tập hợp trung điểm M của IJ khi D di động trên BC
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD
cho tam giác abc vuông tại b. m,n là trung điểm ba,bc. k là tia đối của mn sao cho mn=mk nối k với b, a với n . a) chứng minh tứ giác akbn,aknc là hình bình hành b) gọi h là hình chiếu của k xuống bc. chứng minh tứ giác akhb là hình chữ nhật c) gọi giao điểm của ah và bk là o ; giao điểm của kc và an là i . chứng minh tứ giác hoin là hình thang cân
giúp mình với mình cần gấp
Cho ∆ ABC cân tại A. Gọi K là trung điểm của AC, D là trung điểm của BC.
Chứng minh tứ giác ABDK là hình thang.
b.Gọi M là điểm đối xứng của D qua K. Chứng minh tứ giác AMCD là hình chữ nhật.
c.Từ D vẽ DE ⊥ AC tại E. Gọi G và H lần lượt là trung điểm của DE và EC.
Chứng minh AG ⊥ BE.
GIẢI CÂU C THÔI Ạ
Giúp em với ạ
Bài 2: Cho ABC cân tại A có H là trung điểm BC.
a) Chứng minh AH ⊥ BC tại H.
b) Gọi I là trung điểm AB và D là điểm đối xứng của H qua I. Chứng minh tứ giác BDAH là hình chữ nhật.
c) Gọi K là trung điểm AC và E là điểm đối xứng của H qua K. Chứng minh AECH là hình chữ nhật. Suy ra
ba điểm D, A, E thẳng hàng.
d) Chứng minh D đối xứng với E qua A
cho ∆ABC ⊥ tại A. Gọi M là trung điểm BC
a) Với AB = 6cm; AC = 8cm tính BC, AM.
b) Gọi E đối xứng với A qua M. Chứng minh ABEC là hình chữ nhật.
c) Gọi H là hình chiếu của A lên BC. Kẻ HI ⊥ với AB tại I, K là hình chiếu của H lên AC. Gọi O là giao điểm AH và Ik, N là hình chiếu của H lên An. Chứng minh AH = IK, NO = ½IK
d) góc INK = ?
Cho ∆ABC vuông tại A( AB < AC).Gọi D, E lần lượt là trung điểm của BC và AC
Chứng minh tứ giác ABDE là hình thang vuông.
Gọi K là điểm đối xứng của A qua D. Chứng minh tứ giác ABKC là hình chữ nhật.
Gọi M là điểm đối xứng của A qua BC. Chứng minh tứ giác BMKC là hình thang cân