Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2\)
\(\Leftrightarrow (a^2+4b^2+9c^2).\frac{49}{36}\geq 1\Leftrightarrow a^2+4b^2+9c^2\geq \frac{36}{49}\) (đpcm)
Dấu "=" xảy ra khi \(\frac{a}{1}=\frac{2b}{\frac{1}{2}}=\frac{3c}{\frac{1}{3}}\) hay $a=\frac{36}{49}; b=\frac{9}{49}; c=\frac{4}{49}$