cho \(a,b\ge0\) và \(a+b\le1\). Chứng minh ít nhất 1 trong 2 phương trình sau có nghiệm:
\(x^2-\sqrt{2}\left(a+\dfrac{1}{b}\right)x+\dfrac{25}{8}=0\)
\(x^2-\sqrt{3}\left(b+\dfrac{1}{a}\right)x+\dfrac{75}{16}=0\)
Cho a,b,c > 0 chứng minh \(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
cho a, b, c > 0 và abc=1.
Chứng minh rằng: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
Cho a,b,c >0 thỏa mãn abc=1. Chứng minh:
\(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)
Cho a,b,c >0. Chứng minh:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{a^5}\ge\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)
Cho a, b, c > 0 thoả mãn: \(a+b+c=1\). Chứng minh: \(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{15}{4}\)
Cho \(a;b;c\ge0:a^2+b^2+c^2=1\)
CMR: \(\dfrac{c}{1+ab}+\dfrac{b}{1+ac}+\dfrac{a}{1+bc}\ge1\)