Lời giải:
ĐKĐB \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
\(\Leftrightarrow 1-\frac{a}{a+1}+1-\frac{b}{b+1}+1-\frac{c}{c+1}=2\)
\(\Leftrightarrow \frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)
-----------------------------------------------------------
Ta có: \(\text{VT}=1-\frac{8a^2}{8a^2+1}+1-\frac{8b^2}{8b^2+1}+1-\frac{8c^2}{8c^2+1}\)
\(\Leftrightarrow \text{VT}=3-\underbrace{\left(\frac{8a^2}{8a^2+1}+\frac{8b^2}{8b^2+1}+\frac{8c^2}{8c^2+1}\right)}_{M}\) (1)
Áp dụng BĐT AM-GM:
\(4a^2+1\geq 4a\Rightarrow 8a^2+1=4a^2+(4a^2+1)\geq 4a^2+4a\)
\(\Rightarrow \frac{8a^2}{8a^2+1}\leq \frac{8a^2}{4a^2+4a}=\frac{2a}{a+1}\)
Thực hiện tương tự cho các phân thức còn lại và cộng theo vế:
\(\Rightarrow M\leq 2\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right)=2\) (2)
Từ \((1);(2)\Rightarrow \text{VT}\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)